

SIELCO SISTEMI srl

via Roma, 24 - 22070 Guanzate (CO) - Italy Tel: +39 031899671 - Fax: +39 0313528682 e-mail: info@sielcosistemi.com

website: http://www.sielcosistemi.com

Modulo I/O distribuito 4 canali ingresso RTD comunicante su rete RS-485

SS 3014

Manuale Operativo - protocollo MODBUS **Versione Firmware: 8100**

Tutti i dati condivisi da un modulo comunicante con protocollo Modbus vengono mappati in tabelle, dove ad ogni dato viene associato un determinato

Ogni dato può essere di due tipi:

- "REGISTRO", costituito da 2 byte (word di 16 bit), può essere associato a ingressi o uscite analogiche, variabili, set-point, ecc...
- "COIL", costituito da 1 bit singolo, può essere associato a ingressi digitali (contatti), uscite digitali (relè) oppure a stati logici (allarmi, abilitazioni, ecc...).

Un registro può anche contenere l'immagine (specchio) di più coils, ad esempio i 16 ingressi digitali di un dispositivo possono essere letti o scritti come bit, quindi singolarmente, indirizzando il coil relativo ad ogni ingresso, oppure possono essere letti o scritti come un'unica porta indirizzando il registro associato, dove ogni bit corrisponde ad un coil.

Nel protocollo Modbus, i registri ed i coil si suddividono nei seguenti banchi di indirizzi:

0xxxx e 1xxxx = Coils (bit)

3xxxx e 4xxxx = Registri (word)

TABELLA REGISTRI

Registro	Descrizione	Accesso	E ² P
40001	Test	R/W	
40002	Versione Firmware	R	
40003		R	
40004	Nome Apparato	R/W	*
40005		R/W	*
40006	Comunicazione	R/W	*
40007	Indirizzo	R/W	*
40008	Ritardo RX/TX	R/W	*
40009	Watchdog Timer	R/W	*
40010	Coils	R/W	
40011	Tipo Ingressi	R/W	*
40012	Abilitazione Canali	R/W	*
40013	(riservato)	R/W	*
40014	(riservato)	R	
40015	Ingresso # 0	R	
40016	Ingresso # 1	R	
40017	Ingresso # 2	R	
40018	Ingresso # 3	R	
40019	(riservato)	R	
40020	(riservato)	R	
40021	(riservato)	R	
40022	(riservato)	R	
40023	Valore sincr. ingresso # 0	R	
40024	Valore sincr. ingresso # 1	R	
40025	Valore sincr. ingresso # 2	R	
40026	Valore sincr. ingresso # 3	R	
40027	(riservato)	R	
40028	(riservato)	R	
40029	(riservato)	R	
40030	(riservato)	R	

NOTE:

I registri marcati con ' * ' nella colonna ' E²P ' vengono salvati in EPROM ogni volta che vengono scritti, per essere ricaricati automaticamente ad ogni accensione del dispositivo.

TABELLA COILS

Coil	Descrizione	Accesso	E ² P
00001	Open Detect #0a	R	
00002	Open Detect #0b	R	
00003	Open Detect #1a	R	
00004	Open Detect #1b	R	
00005	Open Detect #2a	R	
00006	Open Detect #2b	R	
00007	Open Detect #3a	R	
80000	Open Detect #3b	R	
00009	Abilitazione Watchdog	R/W	
00010	Evento Watchdog	R/W	
00011	Evento PowerUp	R/W	

FUNZIONI MODBUS SUPPORTATE

Funzione	Descrizione
01	Lettura Coils multipli (banco 0xxxx)
02	Lettura Coils multipli (banco 1xxxx)
03	Lettura Registri multipli (banco 4xxxx)
04	Lettura Registri multipli (banco 3xxxx)
05	Scrittura Coil singolo
06	Scrittura Registro singolo
15	Scrittura Coils multipli
16	Scrittura Registri multipli
08	Diagnostica

NOTE:

Per i moduli della serie SS3000, il banco 0xxxx è lo specchio del banco 1xxxx, come il banco 3xxxx è lo specchio del banco 4xxxx, quindi ad esempio il primo registro può essere indirizzato indifferentemente come 30001 (con la funzione 04) o 40001 (con la funzione 03)

DESCRIZIONE REGISTRI

40001: TEST

Questo registro viene utilizzato per eseguire le seguenti funzioni:

- Calibrazione degli ingressi analogici (vedi descrizione nella sezione "Procedure")
- Campionamento Sincronizzato (vedi descrizione nella sezione "Procedure")

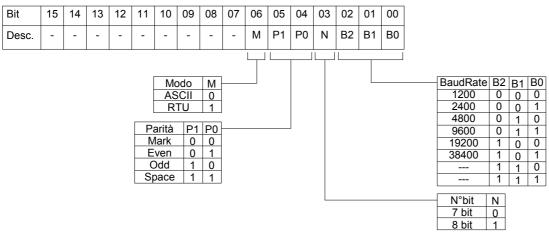
40002 / 40003 : VERSIONE FIRMWARE

Campo di 2 registri di sola lettura, che contiene l'identificativo firmware dato dal costruttore.

- Default del costruttore: 8100 (hex)

40004 / 40005 : NOME APPARATO

Campo di 2 registri (4 byte o 4 caratteri ASCII) a disposizione dell'utente, può contenere il nome dell'apparato o una sigla che ne identifica la funzione all'interno dell'impianto. Ciascuno dei 4 byte può contenere qualsiasi valore da 0 a 255, quindi anche caratteri ASCII.


Il valore di default di questo campo contiene l'identificativo del modulo in caratteri ASCII

- Default del costruttore: "3014" (ASCII).

40006: COMUNICAZIONE

Impostare i bit di questo registro secondo la tabella seguente, per settare il baud-rate, il numero di bit, il tipo di parità e il tipo di protocollo.

- Default del costruttore: 38400 bps, modo RTU

NOTE:

- Il numero di bit è ignorato, in quanto in modalità ASCII è fisso a 7 ed in modalità RTU è fisso a 8.
- In modalità RTU la parità è ignorata (parità NONE)

40007 : INDIRIZZO

Contiene l'indirizzo di rete del modulo; sono permessi gli indirizzi da 1 a 255.

Ogni modulo connesso alla stessa rete deve avere un indirizzo univoco.

L'indirizzo 255 è utilizzato per le funzioni broadcast (es. campionamento sincronizzato)

- Default del costruttore: 01

40008: RITARDO RX/TX

Indica il valore del tempo di ritardo tra la ricezione di un comando e la trasmissione della risposta, espresso in millisecondi.

- Default del costruttore: 01(1 ms.)

40009: WATCHDOG TIMER

Contiene il valore del timer WatchDog, espresso in step di 0,5 secondi. Se il WatchDog è abilitato e il modulo non riceve comandi per un tempo pari al valore contenuto in questo registro, scatta l'allarme WatchDog (vedi descrizione nella sezione "Procedure").

- Default del costruttore: 10 (5 sec.)

40010 : COILS

Questo registro contiene lo specchio della tabella dei Coils: ogni bit del registro corrisponde ad un coil, secondo la tabella sotto riportata. E' possibile utilizzare questo registro per leggere o scrivere contemporaneamente tutti i coils senza dover implementare le funzioni specifiche di scrittura/lettura dei coils (01-02-15). Durante la scrittura, i coils di sola lettura vengono mascherati.

Bit	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
Coil	08	07	06	05	04	03	02	01	-	-	-	-	-	11	10	09

40011: IMPOSTAZIONE TIPO INGRESSI

Contiene la programmazione del tipo di sensore collegato agli ingressi. Tutti i canali hanno la stessa programmazione. I valori da inserire sono elencati nella tabella a fianco.

- Default del costruttore: 17h (Pt100)

Valore	Tipo
07h	0÷2000 Ohm
08h	0÷500 Ohm
17h	Pt100
18h	Ni100
19h	Pt1000
1Ah	Ni1000
1Bh	Pot. < 5000hm
1Ch	Pot. < 2000Ohm

40012 : ABILITAZIONE CANALI

E' consigliabile disabilitare i canali non utilizzati. Scrivere il relativo bit in questo registro per abilitare (1) o disabilitare (0) il canale.

Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Channel	-	-	-	-	-	-	-	-	-	-	-	-	#3	#2	#1	#0

40015: VALORE INGRESSO # 0 40016: VALORE INGRESSO # 1 40017: VALORE INGRESSO # 2 40018: VALORE INGRESSO # 3

Questi registri restituiscono la misura di ogni canale, convertita in unità ingegneristiche: i valori sono espressi in Ohm per gli ingressi in resistenza, % per gli ingressi in potenziometro e °C per gli ingressi in RTD. Il formato è un numero intero di 16 bit con segno; il numero di decimali dipende dal tipo di

ingresso, secondo la tabella a fianco:

Tipo	Decimali
Resistenza	1
Potenziometro	1
RTD	1

40023 : VALORE SINCRONISMO INGRESSO # 0 40024 : VALORE SINCRONISMO INGRESSO # 1 40025 : VALORE SINCRONISMO INGRESSO # 2 40026 : VALORE SINCRONISMO INGRESSO # 3

Quando il modulo riceve il comando di Sincronismo (vedi descrizione nella sezione "Procedure"), i valori attuali degli ingressi presenti nei registri 40015÷40022 vengono salvati in questi registri, canale per canale, per poter essere riletti in un secondo tempo.

DESCRIZIONE COILS

00001 / 00008 : OPEN DETECT

Quando il sensore collegato ad un canale si trova in condizione di break (per la rottura del sensore, per il cavo scollegato o per la sovra-temperatura), il coil corrispondente al canale viene impostato a 1. Ogni canale dispone di 2 sensori di break, per la misura a 3 fili: uno per il filo del generatore di corrente e uno per il filo della compensazione.

00009: ABILITAZIONE ALLARME WATCHDOG

Abilita l'allarme di WatchDog. Se l'allarme è abilitato e il modulo non riceve comandi per un tempo superiore a quello specificato nel registro 40009, scatta l'allarme di WatchDog (vedi descrizione nella sezione "Procedure").

0 = Watchdog disabilitato

1 = Watchdog abilitato

00010: EVENTO ALLARME WATCHDOG

Indica lo stato dell'allarme WatchDog. Se l'allarme è abilitato e il modulo non riceve comandi per un tempo superiore a quello specificato nel registro 40009, questo coil viene forzato a 1. Per annullare l'allarme settare questo coil a 0. Se il coil viene forzato a 1 tramite un comando dall'host, sarà simulato un evento watchdog e verrà generata una condizione di allarme.

0 = Condizione normale

1 = Condizione di allarme

00011: EVENTO POWER-UP

Questo coil viene forzato a 1 ad ogni accensione, indicando che il modulo è stato spento oppure resettato. Scrivendo il coil a 0 e monitorando il suo stato, è possibile sapere se è avvenuto un reset del modulo.

0 = il modulo non si è resettato

1 = reset avvenuto

PROCEDURE

UTILIZZO DELLA FUNZIONE "INIT"

Se non si conosce l'esatta configurazione di un modulo, può risultare impossibile stabilire una comunicazione con esso. La funzione "INIT" consente di ovviare a questo problema:

- Collegare alla rete RS485 solamente il dispositivo da programmare.
- Spegnere il dispositivo.
- Connettere il morsetto INIT (D) al morsetto GND (C).
- Accendere il dispositivo.
- Controllare che il LED verde "PWR" posto sul fronte del modulo sia acceso.

In caso contrario, controllare i collegamenti dell'alimentazione (morsetti I e J) e della rete RS485 (morsetti A e B). Se l'alimentazione è corretta ed il led rimane spento, potrebbe essere necessario invertire il collegamento della rete RS485.

- Impostare la porta di comunicazione con i seguenti valori

baud-rate = 9600 bps parità = None n° bit = 8 bit di stop = 1

- Il modulo risponde all'indirizzo 01 con protocollo RTU.
- Leggere o programmare le impostazioni desiderate nei registri: 40006 : "Comunicazione" per l'impostazione del baud-rate

40007 : "Indirizzo" per impostare l'indirizzo di rete del modulo

- Spegnere il dispositivo.
- Scollegare il morsetto INIT dal morsetto GND.
- Accendere il dispositivo.
- Impostare la porta di comunicazione con il baud-rate programmato nel registro 40006.
- Il modulo risponde con l'indirizzo programmato nel registro 40007.

NOTA: La programmazione di default dei moduli in fase di produzione è la seguente:

Indirizzo : 01Baud-rate : 38400 bpsProtocollo : RTU

WATCHDOG

I moduli della serie SS3000 sono provvisti del timer Watchdog il quale, se abilitato, fa scattare un allarme ogni volta che la comunicazione tra il modulo ed il master rimane inattiva per un tempo superiore a quello configurato. In condizione di allarme, i valori delle uscite vengono automaticamente convertiti nei valori indicati nel relativo registro "safe value", lo stato cioè nel quale devono essere impostate le uscite, e quindi gli attuatori, per evitare danni al sistema in caso di pericolo. Inoltre come ulteriore segnalazione, durante lo stato di allarme il led posto sul fronte del modulo inizia a lampeggiare e viene impostato a 1 il coil "Evento Watchdog".

Per uscire dalla condizione di allarme, resettare il coil "Evento Watchdog": il led smette di lampeggiare ed è possibile comandare le uscite.

E' presente anche un timer Watchdog hardware che sorveglia il funzionamento della CPU interna e si attiva quando la CPU si blocca per qualsiasi motivo, e non resetta il Watchdog entro il tempo prefissato, esso interviene e resetta la CPU, facendone ripartire il programma. Dopo il reset della scheda, le uscite assumeranno il loro valore iniziale ("PowerUp value"), il quale potrebbe non essere identico al valore delle uscite prima del reset. Per questo l'utente, dopo che il modulo si è resettato, deve rimandare il comando di impostazione delle porte di uscita.

SINCRONISMO

La funzione di Sincronismo è costituita da un comando di Broadcast inviato a tutti i moduli della rete SS3000. Quando i moduli ricevono il comando di Sincronismo, tutti gli ingressi vengono salvati negli appositi registri, per poter essere riletti in un secondo tempo. E' così possibile leggere il valore a cui si trovavano di tutti gli ingressi nell'istante in cui è stato inviato il comando di Sincronismo.

Per inviare il comando di sincronismo, scrivere il valore 10 nel registro "Test" (40001), all'indirizzo di rete '255'.

NOTA: I valori di sincronismo non vengono salvati in eprom, quindi all'accensione del modulo, il valore presente nei registri di sincronismo viene resettato.

CALIBRAZIONE

La procedura di calibrazione viene eseguita in fase di collaudo su tutti i moduli. A volte può comunque risultare opportuno ricalibrare il modulo secondo le esigenze dell'utente. Occorre tener presente che per calibrare correttamente i segnali analogici è necessario utilizzare strumenti di precisione ed eseguire correttamente tutti i passaggi necessari, in quanto ogni errore va a discapito della precisione e del buon funzionamento dell'apparato.

NOTA: Per la misura delle termo-resistenze e dei potenziometri, il modulo si basa sulla taratura dell'ingresso 0-500 Ohm o 0-2000 Ohm.

Per ricalibrare l'apparato, seguire la seguente procedura:

- 1 Accendere il dispositivo in condizione di INIT
- 2 Collegare un calibratore ai morsetti relativi all'ingresso da calibrare.
- 3 Impostare il tipo di ingresso da calibrare
- 4 Impostare sul calibratore 0 Ohm.
- 5 Scrivere nel registro "Test" (40001) il valore 20
- 6 Impostare sul calibratore il valore di fondo scala (500 Ohm o 2000 Ohm)
- 7 Scrivere nel registro "Test" (40001) il valore 30
- 8 Ripetere i punti da 2 a 7 per ogni tipo di ingresso da calibrare.

RIF. FW: 8100 ED.11.06 REV.02